An algorithm is proposed for generalized mean curvature flow of closed two-dimensional surfaces, which include inverse mean curvature flow, powers of mean and inverse mean curvature flow, etc. Error estimates are proven for semi- and full discretisations for the generalized flow. The algorithm proposed and studied here combines evolving surface finite elements, whose nodes determine the discrete surface, and linearly implicit backward difference formulae for time integration. The numerical method is based on a system coupling the surface evolution to non-linear second-order parabolic evolution equations for the normal velocity and normal vector. Convergence proofs are presented in the case of finite elements of polynomial degree at least two and backward difference formulae of orders two to five. The error analysis combines stability estimates and consistency estimates to yield optimal-order $H^1$-norm error bounds for the computed surface position, velocity, normal vector, normal velocity, and therefore for the mean curvature. The stability analysis is performed in the matrix-vector formulation, and is independent of geometric arguments, which only enter the consistency analysis. Numerical experiments are presented to illustrate the convergence results, and also to report on monotone quantities, e.g.~Hawking mass for inverse mean curvature flow. Complemented by experiments for non-convex surfaces.


翻译:对于封闭二维表面的普通平均曲线流,包括反平均曲线流、平均和反平均曲线流的功率等等,提出了一种算法。对于一般流动的半和完全分解,可以证明错误估计。这里所建议和研究的算法结合了变化中的表面有限元素,这些元素的节点决定离散表面,以及时间整合的线性隐含后向偏差公式。数字方法基于将表面进化与非线性二级的正常速度和正常矢量的二次分向演进方程相结合的系统。在单向水平的有限元素中至少提供了两个和后向偏差公式。错误分析结合了稳定性估计和一致性估计,以生成计算表层位置、速度、正常矢量、正常速度和平均曲度的最佳偏差界限。稳定性分析是在正常速度和正常矢量的组合中进行的,并且独立于只进入单向多向水平水平的多向值的组合度公式的参数参数的对比证据。 数值分析还以正向正向正态的轨道试验展示结果。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2020年6月29日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员