Precise estimation of uncertainty in predictions for AI systems is a critical factor in ensuring trust and safety. Deep neural networks trained with a conventional method are prone to over-confident predictions. In contrast to Bayesian neural networks that learn approximate distributions on weights to infer prediction confidence, we propose a novel method, Information Aware Dirichlet networks, that learn an explicit Dirichlet prior distribution on predictive distributions by minimizing a bound on the expected max norm of the prediction error and penalizing information associated with incorrect outcomes. Properties of the new cost function are derived to indicate how improved uncertainty estimation is achieved. Experiments using real datasets show that our technique outperforms, by a large margin, state-of-the-art neural networks for estimating within-distribution and out-of-distribution uncertainty, and detecting adversarial examples.
翻译:对AI系统预测的不确定性的精确估计是确保信任和安全的一个关键因素。受过常规方法训练的深神经网络容易发生过于自信的预测。与了解重量分布的近似比重的贝耶斯神经网络相比,我们提出了一个新颖的方法,即 " 了解信息分散网络 ",通过尽量减少预测错误的预期最高标准,惩罚与错误结果有关的信息,从而了解预测分布的明确的分散前分发情况。新的成本功能的属性是用来说明如何实现更好的不确定性估计。使用实际数据集的实验表明,我们的技术以巨大的边距、最先进的神经网络来估计分布内部和分配之外的不确定性,以及探测对抗性实例,从而超越了我们的技术。