While deep neural networks provide good performance for a range of challenging tasks, calibration and uncertainty estimation remain major challenges, especially under distribution shift. In this paper, we propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation, calibration, and out-of-distribution robustness with deep networks. Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle, but is computationally intractable to evaluate exactly for all but the simplest of model classes. We propose to use approximate Bayesian inference technqiues to produce a tractable approximation to the CNML distribution. Our approach can be combined with any approximate inference algorithm that provides tractable posterior densities over model parameters. We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
翻译:虽然深神经网络为一系列具有挑战性的任务提供了良好的性能,但校准和不确定性估计仍然是主要的挑战,特别是在分布转移方面。在本文件中,我们提议将摊还条件的标准化最大可能性(ACNML)方法作为一种可扩缩的通用方法,用于不确定性估计、校准和与深网络的超出分配稳健性。我们的算法以有条件的标准化最大可能性(CNML)编码办法为基础,该办法根据最低描述长度原则具有最微量的最佳性能,但在计算上很难准确评估除最简单的模型类别以外的所有人。我们提议使用近似巴耶斯推断技术,以产生一种可拉近CNML分布的近似近似近似值。我们的方法可以与任何近似推算算算法相结合,为模型参数提供可拉动的后方密度。我们证明,ACNML优于一些在分配范围外投入校准方面进行不确定性估计的先前技术。