We initiate the study of sublinear-time algorithms that access their input via an online adversarial erasure oracle. After answering each query to the input object, such an oracle can erase $t$ input values. Our goal is to understand the complexity of basic computational tasks in extremely adversarial situations, where the algorithm's access to data is blocked during the execution of the algorithm in response to its actions. Specifically, we focus on property testing in the model with online erasures. We show that two fundamental properties of functions, linearity and quadraticity, can be tested for constant $t$ with asymptotically the same complexity as in the standard property testing model. For linearity testing, we prove tight bounds in terms of $t$, showing that the query complexity is $\Theta(\log t)$. In contrast to linearity and quadraticity, some other properties, including sortedness and the Lipschitz property of sequences, cannot be tested at all, even for $t=1$. Our investigation leads to a deeper understanding of the structure of violations of linearity and other widely studied properties. We also consider implications of our results for algorithms that are resilient to online adversarial corruptions instead of erasures.
翻译:我们开始研究亚线性算法, 通过在线对抗消化或触角访问输入。 在回答每个输入对象的查询后, 这样的一个神器可以抹去美元输入值。 我们的目标是在极端敌对的情况下理解基本计算任务的复杂性, 因为在对它采取行动时, 算法对数据的访问受阻。 具体地说, 我们的重点是在模型中进行在线消化功能的财产测试。 我们显示, 功能的两个基本特性, 线性和四面性, 可以测试恒定美元, 其复杂性与标准财产测试模型相同。 对于线性测试, 我们用美元来证明基本计算任务的复杂性。 显示, 在极端敌对情况下, 算法的复杂程度是 $\ Theta (log t) 。 与线性与四面性相比, 其他一些特性, 包括分类和顺序的利普西茨基特特性, 根本无法测试, 即使是美元=1美元。 我们的调查导致更深入地理解侵犯线性结构, 以及我们广泛研究的对抗性能, 也考虑到我们对于在线对抗性分析的结果的影响。