A fair clustering instance is given a data set $A$ in which every point is assigned some color. Colors correspond to various protected attributes such as sex, ethnicity, or age. A fair clustering is an instance where membership of points in a cluster is uncorrelated with the coloring of the points. Of particular interest is the case where all colors are equally represented. If we have exactly two colors, Chierrichetti, Kumar, Lattanzi and Vassilvitskii (NIPS 2017) showed that various $k$-clustering objectives admit a constant factor approximation. Since then, a number of follow up work has attempted to extend this result to a multi-color case, though so far, the only known results either result in no-constant factor approximation, apply only to special clustering objectives such as $k$-center, yield bicrititeria approximations, or require $k$ to be constant. In this paper, we present a simple reduction from unconstrained $k$-clustering to fair $k$-clustering for a large range of clustering objectives including $k$-median, $k$-means, and $k$-center. The reduction loses only a constant factor in the approximation guarantee, marking the first true constant factor approximation for many of these problems.
翻译:公平分组实例被赋予一个数据集 $A, 每个点都有某种颜色。 颜色符合性别、 种族或年龄等各种受保护属性。 公平的分组实例是, 一组点的会籍与点的颜色不相干。 特别令人感兴趣的是, 所有颜色都具有同等代表性。 如果我们有两种颜色, Chierrichetti、 Kumar、 Lattanzi 和 Vassilvitskii ( 2017 NIPS) 显示, 不同的美元分组目标包含一个不变的系数近似值。 从那时以来, 一些后续工作试图将这一结果扩大到一个多色案例, 尽管到目前为止, 唯一已知的结果要么导致不一致的系数近似, 仅适用于特殊组合目标, 如 $- 中心, 产生bicrititerisher 近似值, 或需要 $( 2017 NIPS) 来保持不变。 在本文中, 我们简单地将未受限制的 $ 集中到 公平 美元 美元 美元 美元 集中 组合目标 。 对于包括 $- meakn- mine- mill impressimprill imillationalimpress 的大规模 问题 。