We bring together topological data analysis, applied category theory, and machine learning to study multiparameter hierarchical clustering. We begin by introducing a procedure for flattening multiparameter hierarchical clusterings. We demonstrate that this procedure is a functor from a category of multiparameter hierarchical partitions to a category of binary integer programs. We also include empirical results demonstrating its effectiveness. Next, we introduce a Bayesian update algorithm for learning clustering parameters from data. We demonstrate that the composition of this algorithm with our flattening procedure satisfies a consistency property.
翻译:我们把地形学数据分析、应用类别理论和机器学习结合起来,研究多参数等级群集。我们首先采用一个平坦多参数等级群集的程序。我们证明这一程序是从多参数等级分区到二元整数程序一类的配方。我们还包括了证明其有效性的经验结果。接下来,我们引入了一种巴伊西亚更新算法,从数据中学习群集参数。我们证明这种算法的构成与我们的平坦程序符合一致性特性。