The availability of frequent and cost-free satellite images is in growing demand in the research world. Such satellite constellations as Landsat 8 and Sentinel-2 provide a massive amount of valuable data daily. However, the discrepancy in the sensors' characteristics of these satellites makes it senseless to use a segmentation model trained on either dataset and applied to another, which is why domain adaptation techniques have recently become an active research area in remote sensing. In this paper, an experiment of domain adaptation through style-transferring is conducted using the HRSemI2I model to narrow the sensor discrepancy between Landsat 8 and Sentinel-2. This paper's main contribution is analyzing the expediency of that approach by comparing the results of segmentation using domain-adapted images with those without adaptation. The HRSemI2I model, adjusted to work with 6-band imagery, shows significant intersection-over-union performance improvement for both mean and per class metrics. A second contribution is providing different schemes of generalization between two label schemes - NALCMS 2015 and CORINE. The first scheme is standardization through higher-level land cover classes, and the second is through harmonization validation in the field.
翻译:研究界对频繁和免费的卫星图像的需求日益增长,Landsat 8和Sentinel-2等卫星星座每天提供大量宝贵数据,然而,由于这些卫星传感器特性的差异,使用在数据集和应用于另一个数据集方面受过训练的分层模型是毫无意义的,这就是为什么域适应技术最近已成为遥感方面的一个积极研究领域。在本文件中,利用HRSemI2I模型进行通过风格传输进行域域调整的试验,以缩小Landsat 8和Sentinel-2之间的感应器差异。本文的主要贡献是分析这一方法的权宜性,将使用经域改造的图像进行分层分析的结果与不作调整的结果进行比较。HRSemI2I模型经过调整后,对6波段图像进行了工作,显示出中度和每类测量的跨级工作显著改善。第二项贡献是提供两种标签计划 -- -- NALCMS 2015和 CORINE -- -- 之间的一般化计划。第一个方案是通过更高层次的土地覆盖等级实现标准化,第二个方案是通过实地的统一进行验证。