We consider a semi-discrete finite volume scheme for a degenerate fractional conservation laws driven by a cylindrical Wiener process. Making use of the bounded variation (BV) estimates, Young measure theory, and a clever adaptation of classical Kruzkov theory, we provide estimates on the rate of convergence for approximate solutions to fractional problems. The main difficulty stems from the degenerate fractional operator, and requires a significant departure from the existing strategy to establish Kato's type of inequality. Finally, as an application of this theory, we demonstrate numerical convergence rates.
翻译:我们考虑的是由圆柱形维纳进程驱动的退化的碎片保存法的半分解有限量计划。 利用受约束的变异估计(BV),Young测量理论和古典Kruzkov理论的巧妙调整,我们提供了对近似解决分解问题的趋同率的估计。 主要的难题来自退化的分解操作者,需要大大偏离现有的战略,以确立加藤的不平等类型。 最后,作为这一理论的应用,我们展示了数字趋同率。