We present the Deep Picard Iteration (DPI) method, a new deep learning approach for solving high-dimensional partial differential equations (PDEs). The core innovation of DPI lies in its use of Picard iteration to reformulate the typically complex training objectives of neural network-based PDE solutions into much simpler, standard regression tasks based on function values and gradients. This design not only greatly simplifies the optimization process but also offers the potential for further scalability through parallel data generation. Crucially, to fully realize the benefits of regressing on both function values and gradients in the DPI method, we address the issue of infinite variance in the estimators of gradients by incorporating a control variate, supported by our theoretical analysis. Our experiments on problems up to 100 dimensions demonstrate that DPI consistently outperforms existing state-of-the-art methods, with greater robustness to hyperparameters, particularly in challenging scenarios with long time horizons and strong nonlinearity.
翻译:暂无翻译