We consider the parameterized verification problem for distributed algorithms where the goal is to develop techniques to prove the correctness of a given algorithm regardless of the number of participating processes. Motivated by an asynchronous binary consensus algorithm [J. Aspnes, Fast deterministic consensus in a noisy environment. Journal of Algorithms, 2002], we consider round-based distributed algorithms communicating with shared memory. A particular challenge in these systems is that 1) the number of processes is unbounded, and, more importantly, 2) there is a fresh set of registers at each round. A~verification algorithm thus needs to manage both sources of infinity. In this setting, we prove that the safety verification problem, which consists in deciding whether all possible executions avoid a given error state, is PSPACE-complete. For~negative instances of the safety verification problem, we~also provide exponential lower and upper bounds on the minimal number of processes needed for an error execution and on the minimal round on which the error state can be covered.
翻译:我们考虑了分布式算法的参数化核查问题,在这种算法的目标是开发各种技术来证明特定算法的正确性,而不管参与过程的数目多寡。受非同步的二进制协商一致算法[J. Aspnes, 在一个吵闹的环境中快速确定性协商一致法]的驱动,我们考虑了基于圆基分布式算法的参数化核查问题,与共享的记忆进行交流。这些系统中的一个特殊挑战是:(1) 过程的数目没有限制,更重要的是,(2) 每轮都有一套新的登记册。 ~ 验证算法因此需要管理两个无限的源。在这个环境中,我们证明安全核查问题,即决定所有可能的处决是否避免一个给定的错误状态,是PACACE的完成。关于安全核查问题的反常例子,我们还提供了执行错误所需的最低过程数目以及可以覆盖错误状态的最小回合的指数性低和上限。