Nowadays, the environments of smart systems for Industry 4.0 and Internet of Things (IoT) are experiencing fast industrial upgrading. Big data technologies such as design making, event detection, and classification are developed to help manufacturing organizations to achieve smart systems. By applying data analysis, the potential values of rich data can be maximized and thus help manufacturing organizations to finish another round of upgrading. In this paper, we propose two new algorithms with respect to big data analysis, namely UFC$_{gen}$ and UFC$_{fast}$. Both algorithms are designed to collect three types of patterns to help people determine the market positions for different product combinations. We compare these algorithms on various types of datasets, both real and synthetic. The experimental results show that both algorithms can successfully achieve pattern classification by utilizing three different types of interesting patterns from all candidate patterns based on user-specified thresholds of utility and frequency. Furthermore, the list-based UFC$_{fast}$ algorithm outperforms the level-wise-based UFC$_{gen}$ algorithm in terms of both execution time and memory consumption.


翻译:目前,工业4.0和物联网的智能系统环境正在经历快速的工业升级,设计、事件探测和分类等大型数据技术正在开发,以帮助制造组织实现智能系统。通过应用数据分析,丰富数据的潜在价值可以最大化,从而帮助制造组织完成另一轮升级。在本文件中,我们提出了两个关于大数据分析的新算法,即UFC$和UFC$*fast}美元。两种算法都旨在收集三种模式,帮助人们确定不同产品组合的市场地位。我们比较了各种数据集的算法,包括真实数据集和合成数据集。实验结果显示,两种算法都能够成功地实现模式分类,根据用户指定的功用和频率阈值,从所有候选模式中利用三种不同种类的有趣模式。此外,基于列表的UFC$ ⁇ fast}值算法在执行时间和记忆消耗方面都优于水平的UFC$ ⁇ gen}算法。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员