In this paper, we propose a direct parallel-in-time (PinT) algorithm for time-dependent problems with first- or second-order derivative. We use a second-order boundary value method as the time integrator that leads to a tridiagonal time discretization matrix. Instead of solving the corresponding all-at-once system iteratively, we diagonalize the time discretization matrix, which yields a direct parallel implementation across all time levels. A crucial issue on this methodology is how the condition number of the eigenvector matrix $V$ grows as $n$ is increased, where $n$ is the number of time levels. A large condition number leads to large roundoff error in the diagonalization procedure, which could seriously pollute the numerical accuracy. Based on a novel connection between the characteristic equation and the Chebyshev polynomials, we present explicit formulas for computing $V$ and $V^{-1}$, by which we prove that $\mathrm{Cond}_2(V)=\mathcal{O}(n^{2})$. This implies that the diagonalization process is well-conditioned and the roundoff error only increases moderately as $n$ grows and thus, compared to other direct PinT algorithms, a much larger $n$ can be used to yield satisfactory parallelism. Numerical results on parallel machine are given to support our findings, where over 60 times speedup is achieved with 256 cores.
翻译:在本文中, 我们提出一个直接的平行时间( Pint) 算法( Pint) 算法( Pint), 用于与一阶或二阶衍生物有时间关联的问题。 我们使用二阶边界值方法作为时间整合器, 导致三对角时间分解矩阵。 我们不是反复解决相应的全对齐系统, 而是对时间分解矩阵进行分解, 从而产生在所有时间层面上的直接平行执行。 这个方法的一个关键问题是, Exgenctor Translus $V$ 是如何以美元增长的, 美元是时间水平。 一个大条件数导致在对角化程序中出现大圆形错误, 从而可能严重污染数字准确性。 基于特性方程和Chebyshev 多元数字之间的新联系, 我们提出了计算美元和美元之间的明确公式。 我们通过这个公式可以证明 $mathrm{ cond} ( V) $@ mathcal} (n) $ (n) (n) 美元) 。 美元是时间值 。 一个条件导致在对双向递化过程中结果进行大幅递增至平态。 。