In the current field of clinical medicine, traditional methods for analyzing recurrent events have limitations when dealing with complex time-dependent data. This study combines Long Short-Term Memory networks (LSTM) with the Cox model to enhance the model's performance in analyzing recurrent events with dynamic temporal information. Compared to classical models, the LSTM-Cox model significantly improves the accuracy of extracting clinical risk features and exhibits lower Akaike Information Criterion (AIC) values, while maintaining good performance on simulated datasets. In an empirical analysis of bladder cancer recurrence data, the model successfully reduced the mean squared error during the training phase and achieved a Concordance index of up to 0.90 on the test set. Furthermore, the model effectively distinguished between high and low-risk patient groups, and the identified recurrence risk features such as the number of tumor recurrences and maximum size were consistent with other research and clinical trial results. This study not only provides a straightforward and efficient method for analyzing recurrent data and extracting features but also offers a convenient pathway for integrating deep learning techniques into clinical risk prediction systems.
翻译:暂无翻译