We present convergence analysis towards a numerical scheme designed for Q-tensor flows of nematic liquid crystals. This scheme is based on the Invariant Energy Quadratization method, which introduces an auxiliary variable to replace the original energy functional. In this work, we have shown that given an initial value with $H^2$ regularity, we can obtain a uniform $H^2$ estimate on the numerical solutions for Q-tensor flows and then deduce the convergence to a strong solution of the parabolic-type Q-tensor equation. We have also shown that the limit of the auxiliary variable is equivalent to the original energy functional term in the strong sense.
翻译:我们对用于微量液体晶体的Q-10流的数值方法进行了趋同分析,这一方法基于不易的能源四分位法,该方法引入了一个辅助变量以取代原有的能源功能。在这项工作中,我们已经表明,如果最初值为2H美元,我们就可以获得关于Q-10流数字解决办法的统一估计值,然后推导出接近于抛物线型Q-10sor等式的强有力解决方案。我们还表明,辅助变量的极限相当于强烈意义上的原始能源功能术语。