Periodicity detection is an important task in time series analysis, but still a challenging problem due to the diverse characteristics of time series data like abrupt trend change, outlier, noise, and especially block missing data. In this paper, we propose a robust and effective periodicity detection algorithm for time series with block missing data. We first design a robust trend filter to remove the interference of complicated trend patterns under missing data. Then, we propose a robust autocorrelation function (ACF) that can handle missing values and outliers effectively. We rigorously prove that the proposed robust ACF can still work well when the length of the missing block is less than $1/3$ of the period length. Last, by combining the time-frequency information, our algorithm can generate the period length accurately. The experimental results demonstrate that our algorithm outperforms existing periodicity detection algorithms on real-world time series datasets.
翻译:在时间序列分析中,定期检测是一项重要任务,但由于时间序列数据的不同特点,例如突然趋势变化、异常值、噪音,特别是块状缺失数据等时间序列数据的不同特点,定期检测仍是一个具有挑战性的问题。在本文中,我们建议对带有块状缺失数据的时间序列采用稳健和有效的周期检测算法。我们首先设计一个强大的趋势过滤器,以消除缺失数据下复杂趋势模式的干扰。然后,我们提出一个能够有效处理缺失值和外部值的稳健的自动调节函数。我们严格证明,当缺失区块的长度小于时段长度的1/3美元时,拟议稳健的ACF仍然可以运行。最后,通过将时间频率信息结合起来,我们的算法可以准确生成周期长度。实验结果表明,我们的算法比现实时间序列中现有的周期检测算法要好得多。</s>