This paper shows that graph spectral embedding using the random walk Laplacian produces vector representations which are completely corrected for node degree. Under a generalised random dot product graph, the embedding provides uniformly consistent estimates of degree-corrected latent positions, with asymptotically Gaussian error. In the special case of a degree-corrected stochastic block model, the embedding concentrates about K distinct points, representing communities. These can be recovered perfectly, asymptotically, through a subsequent clustering step, without spherical projection, as commonly required by algorithms based on the adjacency or normalised, symmetric Laplacian matrices. While the estimand does not depend on degree, the asymptotic variance of its estimate does -- higher degree nodes are embedded more accurately than lower degree nodes. Our central limit theorem therefore suggests fitting a weighted Gaussian mixture model as the subsequent clustering step, for which we provide an expectation-maximisation algorithm.
翻译:本文显示使用随机漫步 Laplacian 的图形光谱嵌入使用随机漫步的 Laplacian 生成矢量显示, 并完全纠正为节点度。 在一般随机点产品图中, 嵌入提供了一致的度校正潜在位置估计值, 并带有无静态的高斯误差。 在度校正的随机随机随机切换区块模型的特殊情况下, 嵌入浓缩到 K 不同点上, 代表社区。 这些可以完美、 静态地通过随后的集成步骤进行回收, 而不进行球形投影, 这是基于相近性或正常化的对称 Laplacian 矩阵的算法通常要求的。 虽然估计值和不取决于度, 但其估计值的无症状差异确实 -- 更高度节点嵌入比较低节点更准确。 因此, 我们的中心限制符号建议, 将一个加权高斯混合物模型作为随后的集制步骤加以匹配, 我们为此提供预期- 最大化算法 。