Versatile Video Coding (VVC) has set a new milestone in high-efficiency video coding. In the standard encoder, the $\lambda$-domain rate control is incorporated for its high accuracy and good Rate-Distortion (RD) performance. In this paper, we formulate this task as a Nash equilibrium problem that effectively bargains between multiple agents, {\it i.e.}, Coding Tree Units (CTUs) in the frame. After that, we calculate the optimal $\lambda$ value with a two-step strategy: a Newton method to iteratively obtain an intermediate variable, and a solution of Nash equilibrium to obtain the optimal $\lambda$. Finally, we propose an effective CTU-level rate allocation with the optimal $\lambda$ value. To the best of our knowledge, we are the first to combine game theory with $\lambda$-domain rate control. Experimental results with Common Test Conditions (CTC) demonstrate the efficiency of the proposed method, which outperforms the state-of-the-art CTU-level rate allocation algorithms.
翻译:Veratile Video Coding (VVC) 在高效益视频编码中设定了一个新的里程碑。 在标准编码器中, $\lambda$- domain 比例控制被整合为高精度和高调调调效( RD) 。 在本文中, 我们将此任务描述为纳什平衡问题, 使多个代理商之间有效交易, 即 yit i., 编码树单位( CTUs) 。 在此之后, 我们用一个两步策略来计算最佳 $\lambda$ 值 。 我们计算最佳 $\ lambda$ 的值 。 之后, 我们用一个双步策略来计算 : 牛顿 方法, 以迭接方式获取中间变量, 和纳什平衡的解决方案, 以获得最佳的 $\ lambda$ 。 最后, 我们提出一个有效的 CTU 级别 比例 分配 。 根据我们所知, 我们首先将游戏理论与 $\lambda $- domain polution ducer contal contal restal laction.