We adopt the integral definition of the fractional Laplace operator and analyze discretization techniques for a fractional, semilinear, and elliptic optimal control problem posed on a Lipschitz polytope. We consider two strategies of discretization: a semidiscrete scheme where control variables are not discretized -- the so-called variational discretization approach -- and a fully discrete scheme where control variables are discretized with piecewise constant functions. We discretize the corresponding state and adjoint equations with a finite element scheme based on continuous piecewise linear functions and derive error estimates. With these estimates at hand, we derive error bounds for the semidiscrete scheme on quasi-uniform and suitable graded meshes, and improve the ones that are available in the literature for the fully discrete scheme.
翻译:我们采用了分解拉普特操作员的整体定义,并分析了对利普西茨聚体上产生的分解、半线性和椭圆性最佳控制问题进行分解的技术。我们考虑了两种分解战略:即控制变量没有分解的半分解办法 -- -- 所谓的变异分解办法 -- -- 和控制变量与片状恒定函数分解的完全离散办法。我们根据连续的分解线函数和出错估计,将相应的状态和对齐等方程式与有限的元素公式分解。我们掌握这些估计,我们得出半分解办法在准异形和适当的分级模片上的误差界限,并改进文献中为完全分解办法提供的参数。