We prove an approximate max-multiflow min-multicut theorem for bounded treewidth graphs. In particular, we show the following: Given a treewidth-$r$ graph, there exists a (fractional) multicommodity flow of value $f$, and a multicut of capacity $c$ such that $ f \leq c \leq \mathcal{O}(\ln (r+1)) \cdot f$. It is well known that the multiflow-multicut gap on an $r$-vertex (constant degree) expander graph can be $\Omega(\ln r)$, and hence our result is tight up to constant factors. Our proof is constructive, and we also obtain a polynomial time $\mathcal{O}(\ln (r+1))$-approximation algorithm for the minimum multicut problem on treewidth-$r$ graphs. Our algorithm proceeds by rounding the optimal fractional solution to the natural linear programming relaxation of the multicut problem. We introduce novel modifications to the well-known region growing algorithm to facilitate the rounding while guaranteeing at most a logarithmic factor loss in the treewidth.


翻译:我们证明,对于捆绑的树枝图形,我们是一个近乎最大-多流的多倍点理论。特别是,我们展示了以下内容:在树形-美元图中,存在一个价值f美元(f$)的(折合)多通货流,一个能力方块的(折合的)美元倍数,例如,美元=leq c\leq\leq\mathcal{O}(ln)\(r+1))\cdot f$。众所周知,一个美元-垂直(常态)扩展图上的多流-多流差可以是$(Omega-ln r),因此我们的结果接近于恒定因素。我们的证据是建设性的,我们还获得了一个用于树形-$(r+1)最小多立点问题的多元度算法。我们的算法通过将最佳的分数解决方案四舍四舍五入到自然线性编程变换速度,从而在最清楚的树形区域引入了新式的传算法,同时,我们引入了最清楚的缩算法,以保证了圆形的损区域。

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月9日
Arxiv
0+阅读 · 2023年1月5日
Arxiv
65+阅读 · 2021年6月18日
VIP会员
相关VIP内容
机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员