Motion coherence is an important clue for distinguishing true correspondences from false ones. Modeling motion coherence on sparse putative correspondences is challenging due to their sparsity and uneven distributions. Existing works on motion coherence are sensitive to parameter settings and have difficulty in dealing with complex motion patterns. In this paper, we introduce a network called Laplacian Motion Coherence Network (LMCNet) to learn motion coherence property for correspondence pruning. We propose a novel formulation of fitting coherent motions with a smooth function on a graph of correspondences and show that this formulation allows a closed-form solution by graph Laplacian. This closed-form solution enables us to design a differentiable layer in a learning framework to capture global motion coherence from putative correspondences. The global motion coherence is further combined with local coherence extracted by another local layer to robustly detect inlier correspondences. Experiments demonstrate that LMCNet has superior performances to the state of the art in relative camera pose estimation and correspondences pruning of dynamic scenes.
翻译:运动一致性是区分真实对应物与虚假对应物的重要线索。 模拟稀有推定对应物的运动一致性因其偏狭和分布不均而具有挑战性。 运动一致性的现有工作对参数设置十分敏感, 并难以处理复杂的运动模式。 在本文中, 我们引入了一个名为 Laplacian 动作一致性网络( LMCNet ) 的网络, 以学习对应物的移动一致性属性。 我们提出一个新颖的配方, 以在通信图上实现平稳功能, 并显示该配方允许用 Laplacian 绘制封闭式的解决方案。 这个封闭式解决方案使我们能够在一个学习框架中设计一个不同的层, 以捕捉从平面对应物中获取全球运动的一致性。 全球运动一致性进一步与另一个本地层提取的本地一致性相结合, 以强力检测直线通信。 实验显示, LMCNet在相对相机中与艺术状态的性能优于高性能, 构成动态场景的估算和对应。