Visual Place Recognition (VPR) enables robots and autonomous vehicles to identify previously visited locations by matching current observations against a database of known places. However, VPR systems face significant challenges when deployed across varying visual environments, lighting conditions, seasonal changes, and viewpoints changes. Failure-critical VPR applications, such as loop closure detection in simultaneous localization and mapping (SLAM) pipelines, require robust estimation of place matching uncertainty. We propose three training-free uncertainty metrics that estimate prediction confidence by analyzing inherent statistical patterns in similarity scores from any existing VPR method. Similarity Distribution (SD) quantifies match distinctiveness by measuring score separation between candidates; Ratio Spread (RS) evaluates competitive ambiguity among top-scoring locations; and Statistical Uncertainty (SU) is a combination of SD and RS that provides a unified metric that generalizes across datasets and VPR methods without requiring validation data to select the optimal metric. All three metrics operate without additional model training, architectural modifications, or computationally expensive geometric verification. Comprehensive evaluation across nine state-of-the-art VPR methods and six benchmark datasets confirms that our metrics excel at discriminating between correct and incorrect VPR matches, and consistently outperform existing approaches while maintaining negligible computational overhead, making it deployable for real-time robotic applications across varied environmental conditions with improved precision-recall performance.
翻译:暂无翻译