Bayesian optimization is a data-efficient technique which can be used for control parameter tuning, parametric policy adaptation, and structure design in robotics. Many of these problems require optimization of functions defined on non-Euclidean domains like spheres, rotation groups, or spaces of positive-definite matrices. To do so, one must place a Gaussian process prior, or equivalently define a kernel, on the space of interest. Effective kernels typically reflect the geometry of the spaces they are defined on, but designing them is generally non-trivial. Recent work on the Riemannian Mat\'ern kernels, based on stochastic partial differential equations and spectral theory of the Laplace-Beltrami operator, offers promising avenues towards constructing such geometry-aware kernels. In this paper, we study techniques for implementing these kernels on manifolds of interest in robotics, demonstrate their performance on a set of artificial benchmark functions, and illustrate geometry-aware Bayesian optimization for a variety of robotic applications, covering orientation control, manipulability optimization, and motion planning, while showing its improved performance.
翻译:Bayesian优化是一种数据效率高的技术,可用于控制参数的调整、参数政策调整和机器人的结构设计。其中许多问题要求优化在非欧洲化领域界定的功能,如球体、旋转组或正确定基质空间。要做到这一点,就必须在兴趣空间上事先或同等地界定高斯进程,在兴趣空间上确定一个内核。有效的内核通常反映所定义的空间的几何,但设计时一般是非三重性的。最近关于Riemannian Mat\'ern内核的工作,以拉皮尔-贝尔特拉米操作员的分光谱部分方程式和光谱理论为基础,为建造这种几何测量内核提供了有希望的途径。在本文中,我们研究在机器人感兴趣的方块上实施这些内核的技术,展示其在一套人工基准功能上的性能,并演示各种机器人应用的几何测量-觉优化,包括方向控制、人性优化、运动和规划,同时展示其改进的性能和性能。