This paper addresses the open set recognition (OSR) problem, where the goal is to correctly classify samples of known classes while detecting unknown samples to reject. In the OSR problem, "unknown" is assumed to have infinite possibilities because we have no knowledge about unknowns until they emerge. Intuitively, the more an OSR system explores the possibilities of unknowns, the more likely it is to detect unknowns. Thus, this paper proposes a novel synthetic unknown class learning method that generates unknown-like samples while maintaining diversity between the generated samples and learns these samples. In addition to this unknown sample generation process, knowledge distillation is introduced to provide room for learning synthetic unknowns. By learning the unknown-like samples and known samples in an alternating manner, the proposed method can not only experience diverse synthetic unknowns but also reduce overgeneralization with respect to known classes. Experiments on several benchmark datasets show that the proposed method significantly outperforms other state-of-the-art approaches. It is also shown that realistic unknown digits can be generated and learned via the proposed method after training on the MNIST dataset.


翻译:本文讨论了开放的识别( OSR) 问题, 目的是正确分类已知类别样本,同时检测未知样本,加以拒绝。 在 OSR 问题中, “ 未知” 被假定具有无限的可能性, 因为我们不知道未知物, 直到这些未知物出现。 直觉看, OSR 系统越是探索未知物的可能性, 发现未知物的可能性就越大。 因此, 本文提出一种新的合成未知类学习方法, 产生类似未知的样本, 同时保持生成样本之间的多样性, 并学习这些样本。 除了这一未知的样本生成过程外, 还引入了知识蒸馏, 为学习合成未知物提供空间。 通过以交替方式学习未知的样本和已知样本, 拟议的方法不仅可以体验不同的合成未知物, 还可以减少已知类别方面的超常化。 几个基准数据集的实验表明, 拟议的方法大大超越了其他状态的样本, 并学习这些样本。 此外, 也表明, 在对 NNIST 数据设置的培训后, 可以通过拟议方法生成和学习现实的未知数位。

1
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月18日
Arxiv
4+阅读 · 2021年4月13日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
7+阅读 · 2020年10月9日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
8+阅读 · 2014年6月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2022年1月18日
Arxiv
4+阅读 · 2021年4月13日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
7+阅读 · 2020年10月9日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
8+阅读 · 2014年6月27日
Top
微信扫码咨询专知VIP会员