Inverted landing is a routine behavior among a number of animal fliers. However, mastering this feat poses a considerable challenge for robotic fliers, especially to perform dynamic perching with rapid body rotations (or flips) and landing against gravity. Inverted landing in flies have suggested that optical flow senses are closely linked to the precise triggering and control of body flips that lead to a variety of successful landing behaviors. Building upon this knowledge, we aimed to replicate the flies' landing behaviors in small quadcopters by developing a control policy general to arbitrary ceiling-approach conditions. First, we employed reinforcement learning in simulation to optimize discrete sensory-motor pairs across a broad spectrum of ceiling-approach velocities and directions. Next, we converted the sensory-motor pairs to a two-stage control policy in a continuous augmented-optical flow space. The control policy consists of a first-stage Flip-Trigger Policy, which employs a one-class support vector machine, and a second-stage Flip-Action Policy, implemented as a feed-forward neural network. To transfer the inverted-landing policy to physical systems, we utilized domain randomization and system identification techniques for a zero-shot sim-to-real transfer. As a result, we successfully achieved a range of robust inverted-landing behaviors in small quadcopters, emulating those observed in flies.
翻译:暂无翻译