Advances in information technology have led to extremely large datasets that are often kept in different storage centers. Existing statistical methods must be adapted to overcome the resulting computational obstacles while retaining statistical validity and efficiency. Split-and-conquer approaches have been applied in many areas, including quantile processes, regression analysis, principal eigenspaces, and exponential families. We study split-and-conquer approaches for the distributed learning of finite Gaussian mixtures. We recommend a reduction strategy and develop an effective MM algorithm. The new estimator is shown to be consistent and retains root-n consistency under some general conditions. Experiments based on simulated and real-world data show that the proposed split-and-conquer approach has comparable statistical performance with the global estimator based on the full dataset, if the latter is feasible. It can even slightly outperform the global estimator if the model assumption does not match the real-world data. It also has better statistical and computational performance than some existing methods.


翻译:信息技术的进步已导致大量数据集,这些数据集往往保存在不同储存中心; 现有的统计方法必须加以调整,以克服由此造成的计算障碍,同时保持统计有效性和效率; 在许多领域,包括四分法进程、回归分析、主要电子元空间和指数式组别,应用了分解法和分解法,我们研究了有限高斯混合物分布式学习的分解法,我们建议减少战略并开发有效的MMM算法。 新的估计算法显示,在一般条件下,新的估计算法是一致的,并保持了根与根的一致性。 以模拟和现实世界数据为基础的实验显示,如果完全数据集可行,拟议的分解法方法与全球估计法具有可比的统计性能。 如果模型假设与真实世界数据不匹配,它甚至能略微超过全球估计法。 它还比某些现有方法在统计和计算上更好。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月7日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2022年1月7日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2017年12月1日
Top
微信扫码咨询专知VIP会员