Multinomial logistic regression models allow one to predict the risk of a categorical outcome with more than 2 categories. When developing such a model, researchers should ensure the number of participants (n) is appropriate relative to the number of events (E.k) and the number of predictor parameters (p.k) for each category k. We propose three criteria to determine the minimum n required in light of existing criteria developed for binary outcomes. The first criteria aims to minimise the model overfitting. The second aims to minimise the difference between the observed and adjusted R2 Nagelkerke. The third criterion aims to ensure the overall risk is estimated precisely. For criterion (i), we show the sample size must be based on the anticipated Cox-snell R2 of distinct one-to-one logistic regression models corresponding to the sub-models of the multinomial logistic regression, rather than on the overall Cox-snell R2 of the multinomial logistic regression. We tested the performance of the proposed criteria (i) through a simulation study, and found that it resulted in the desired level of overfitting. Criterion (ii) and (iii) are natural extensions from previously proposed criteria for binary outcomes. We illustrate how to implement the sample size criteria through a worked example considering the development of a multinomial risk prediction model for tumour type when presented with an ovarian mass. Code is provided for the simulation and worked example. We will embed our proposed criteria within the pmsampsize R library and Stata modules.


翻译:多重后勤回归模型可以预测2类以上绝对结果的风险。在开发这一模型时,研究人员应确保参与者人数(n)相对于事件数量(E.k)和每个类别预测参数(p.k)的数量(p.k)是适当的。我们建议了三项标准,以根据为二进制结果制定的现有标准确定所需的最低nn;第一项标准旨在尽可能减少模型的超配;第二项标准旨在尽可能缩小观察到的和调整的R2 Nagelkerke之间的差别。第三项标准旨在确保准确估计总体风险。关于标准(i),我们表明样本规模必须基于预期的Cox-snell R2, 与多进制后勤回归的子模型相对的不同的Cox-snell R2。我们提出了三项标准,而不是根据总体的Cox-snell R2 物流回归标准确定最低n。我们通过模拟研究测试了拟议标准的绩效(i),并发现它导致理想的过度匹配水平。关于标准(i),Criterial(ii)和(iii)样本规模规模的模型必须基于预期的Coxal-reval 标准,从我们从一个拟议的标准到一个通过一个测试的自然扩展标准,将如何展示一个通过一个测试到一个通过一个测试结果。

0
下载
关闭预览

相关内容

多元逻辑回归模型的理论前提相对判别分析法要宽松得多,且没有关于分布类型、协方差阵等方面的严格假定。不过,在大量运用多元逻辑 回归的研究中往往忽视了另一个相当重要的问题,即模型自变量之间可能存在的多重共线性干扰。与其他多元回归方法一样,Logistic回归模型也对多元共线性敏感。当变量之间的相关程度提高时,系数估计的标准误将会急剧增加;同时,系数对样本和模型设置都非常敏感,模型设置的微小变化、在样本总体中加入或删除案例等变动,都会导致系数估计的较大变化。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月19日
Arxiv
0+阅读 · 2022年9月16日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员