Gender bias in machine translation (MT) systems poses a significant challenge to achieving accurate and inclusive translations. This paper examines gender bias in machine translation systems for languages such as Telugu and Kannada from the Dravidian family, analyzing how gender inflections affect translation accuracy and neutrality using Google Translate and ChatGPT. It finds that while plural forms can reduce bias, individual-centric sentences often maintain the bias due to historical stereotypes. The study evaluates the Chain of Thought processing, noting significant bias mitigation from 80% to 4% in Telugu and from 40% to 0% in Kannada. It also compares Telugu and Kannada translations, emphasizing the need for language specific strategies to address these challenges and suggesting directions for future research to enhance fairness in both data preparation and prompts during inference.
翻译:暂无翻译