Missing time-series data is a prevalent problem in finance. Imputation methods for time-series data are usually applied to the full panel data with the purpose of training a model for a downstream out-of-sample task. For example, the imputation of missing returns may be applied prior to estimating a portfolio optimization model. However, this practice can result in a look-ahead-bias in the future performance of the downstream task. There is an inherent trade-off between the look-ahead-bias of using the full data set for imputation and the larger variance in the imputation from using only the training data. By connecting layers of information revealed in time, we propose a Bayesian consensus posterior that fuses an arbitrary number of posteriors to optimally control the variance and look-ahead-bias trade-off in the imputation. We derive tractable two-step optimization procedures for finding the optimal consensus posterior, with Kullback-Leibler divergence and Wasserstein distance as the measure of dissimilarity between posterior distributions. We demonstrate in simulations and an empirical study the benefit of our imputation mechanism for portfolio optimization with missing returns.
翻译:缺少的时间序列数据是金融方面一个普遍的问题。时间序列数据的假设方法通常适用于整个小组数据,目的是培训下游非抽样任务的模式。例如,在估计组合优化模型之前,可以对缺失的回报进行估算;然而,这种做法可能会在下游任务的未来业绩中造成表面偏差。在使用全数据集进行估算的外观偏差和仅使用培训数据在估算上的较大差异之间有一个内在的权衡取舍。通过将及时披露的信息层连接起来,我们提出一种巴耶斯共识后视镜,将任意数的后视镜结合起来,以最佳地控制差异,并在估算中进行外观偏差和外观偏差的偏差。我们从中得出可移动的两步优化优化程序,以找到最佳的共识后视镜, Kullback- Leiper 偏差和瓦塞斯特因距离作为后视分布相异的测量标准。我们在模拟和实验性组合回报中展示了我们缺失的模拟和实验性组合回报机制的效益。