Existing low-light image enhancement techniques are mostly not only difficult to deal with both visual quality and computational efficiency but also commonly invalid in unknown complex scenarios. In this paper, we develop a new Self-Calibrated Illumination (SCI) learning framework for fast, flexible, and robust brightening images in real-world low-light scenarios. To be specific, we establish a cascaded illumination learning process with weight sharing to handle this task. Considering the computational burden of the cascaded pattern, we construct the self-calibrated module which realizes the convergence between results of each stage, producing the gains that only use the single basic block for inference (yet has not been exploited in previous works), which drastically diminishes computation cost. We then define the unsupervised training loss to elevate the model capability that can adapt to general scenes. Further, we make comprehensive explorations to excavate SCI's inherent properties (lacking in existing works) including operation-insensitive adaptability (acquiring stable performance under the settings of different simple operations) and model-irrelevant generality (can be applied to illumination-based existing works to improve performance). Finally, plenty of experiments and ablation studies fully indicate our superiority in both quality and efficiency. Applications on low-light face detection and nighttime semantic segmentation fully reveal the latent practical values for SCI. The source code is available at https://github.com/vis-opt-group/SCI.
翻译:现有的低光图像增强技术主要不仅很难处理视觉质量和计算效率,而且在未知的复杂情景中也普遍无效。 在本文中,我们开发了一个用于快速、灵活和强力地在现实世界低光情景中亮光图像的自我校准化(SCI)学习框架。 具体地说,我们建立一个具有分量共享权的连锁照明学习过程来完成这项任务。 考虑到级联模式的计算负担,我们构建了一个自我校准模块,该模块实现每个阶段结果的趋同,产生收益,仅使用单一的基本点来进行推断(以前的工程没有利用过),大幅降低计算成本。 然后我们定义了未经监督的培训损失,以提升模型能力,使之适应一般场景。 此外,我们进行全面探索,以挖掘SCI的固有属性(现有工程中的缺损),包括操作不敏感度适应(在不同的简单操作环境中取得稳定的性能)和模型相关的一般性(可以应用到以光度为基准的图像/潜值的测试) 。最后,我们用于基于光度/潜值的Slimimimal 演示中的现有质量测试,可以充分展示。