We propose Im2Wav, an image guided open-domain audio generation system. Given an input image or a sequence of images, Im2Wav generates a semantically relevant sound. Im2Wav is based on two Transformer language models, that operate over a hierarchical discrete audio representation obtained from a VQ-VAE based model. We first produce a low-level audio representation using a language model. Then, we upsample the audio tokens using an additional language model to generate a high-fidelity audio sample. We use the rich semantics of a pre-trained CLIP embedding as a visual representation to condition the language model. In addition, to steer the generation process towards the conditioning image, we apply the classifier-free guidance method. Results suggest that Im2Wav significantly outperforms the evaluated baselines in both fidelity and relevance evaluation metrics. Additionally, we provide an ablation study to better assess the impact of each of the method components on overall performance. Lastly, to better evaluate image-to-audio models, we propose an out-of-domain image dataset, denoted as ImageHear. ImageHear can be used as a benchmark for evaluating future image-to-audio models. Samples and code can be found inside the manuscript.
翻译:我们提出 Im2Wav, 即图像导导开的开放式音频生成系统 。 在输入图像或图像序列中, Im2Wav 生成了一个与语义相关的声音。 Im2Wav 以两个变异语言模型为基础, 运行于从 VQ- VAE 模型中获得的等级分立的音频表达方式。 我们首先使用语言模型生成一个低级别音频表达方式。 然后, 我们用一个额外的语言模型对音效标牌进行增缩, 以生成高忠实音频样本。 我们使用经过预先训练的 CLIP 嵌入的丰富的语义表达方式, 将其作为一个图像模型的直观表达方式来设置语言模型。 此外, 我们提出将生成过程引向调节图像, 我们采用不使用分类制导式指导方法。 结果显示, Im2Wav 大大超越了所评估的基线, 既使用语言模型, 也使用相关评价尺度衡量尺度。 此外, 我们提供一项对比研究, 以更好地评估每个方法组件对总体性表现的影响。 最后, 我们提议将图像到图像模型外部图像作为内部的模型, 可以作为基准。