In this paper, we develop a unified dynamic intelligent reflecting surface (IRS) beamforming framework to boost the sum computation rate of an IRS-aided mobile edge computing (MEC) system, where each device follows a binary offloading policy. Specifically, the task of each device has to be either executed locally or offloaded to MEC servers as a whole with the aid of given number of IRS beamforming vectors available. By flexibly controlling the number of IRS reconfiguration times, the system can achieve a balance between the performance and associated signalling overhead. We aim to maximize the sum computation rate by jointly optimizing the computational mode selection for each device, offloading time allocation, and IRS beamforming vectors across time. Since the resulting optimization problem is non-convex and NP-hard, there are generally no standard methods to solve it optimally. To tackle this problem, we first propose a penalty-based successive convex approximation algorithm, where all the associated variables in the inner-layer iterations are optimized simultaneously and the obtained solution is guaranteed to be locally optimal. Then, we further derive the offloading activation condition for each device by deeply exploiting the intrinsic structure of the original optimization problem. According to the offloading activation condition, a low-complexity algorithm based on the successive refinement method is proposed to obtain high-quality solutions, which is more appealing for practical systems with a large number of devices and IRS elements. Moreover, the optimal condition for the proposed low-complexity algorithm is revealed. Numerical results demonstrate the effectiveness of our proposed algorithms and also unveil the fundamental performance-cost tradeoff of the proposed dynamic IRS beamforming framework.
翻译:在本文中, 我们开发了一个统一的动态智能反映表面( IRS) 束形框架, 以提升IRS辅助的移动边缘计算系统( MEC) 的计算率, 每个设备都遵循二进制卸载政策。 具体地说, 每个设备的任务必须在当地执行, 或卸载到整个MEC 服务器, 辅助一定数量的IRS 箭形矢量 。 通过灵活控制IRS 重新配置时间, 系统可以实现性能和相关的信号传输管理之间的平衡。 我们的目标是通过联合优化每个设备计算模式的选择、 卸载时间分配和 IRS 自动调整矢量的计算率, 来最大限度地实现总和计算率。 由于由此产生的优化问题必须是非电流和NP- 硬化, 通常没有标准方法来最佳地解决这个问题。 为了解决这个问题, 我们首先提出一个基于罚款的convexx 缩略法的算法, 使内层交易中的所有相关变量同时得到优化, 并且获得的解决方案保证是本地最优化的。 之后, 我们进一步从最优化的优化的内向性递化的内向性变变变的系统, 正在进一步展示一个基于不断变的系统 升级的机 的内压式, 的系统 的机变现式 正在显示 的 的 的机变式 的机变换式 的机变式 。