Uncertainty estimation and ensembling methods go hand-in-hand. Uncertainty estimation is one of the main benchmarks for assessment of ensembling performance. At the same time, deep learning ensembles have provided state-of-the-art results in uncertainty estimation. In this work, we focus on in-domain uncertainty for image classification. We explore the standards for its quantification and point out pitfalls of existing metrics. Avoiding these pitfalls, we perform a broad study of different ensembling techniques. To provide more insight in this study, we introduce the deep ensemble equivalent score (DEE) and show that many sophisticated ensembling techniques are equivalent to an ensemble of only few independently trained networks in terms of test performance.
翻译:不确定性的估算和编组方法是手牵手的。不确定性的估算是评估组合性性能的主要基准之一。与此同时,深刻的学习集合提供了不确定性估计的最新结果。在这项工作中,我们侧重于图像分类的内在不确定性。我们探讨了其量化标准,并指出了现有指标的缺陷。避免了这些缺陷,我们对不同的组合性技术进行了广泛的研究。为了更深入地了解这一研究,我们引入了深厚的混合等同分(DEE),并表明许多复杂的组合技术在测试性能方面相当于只有少数经过独立培训的网络的集合。