Zig-Zag is Piecewise Deterministic Markov Process, efficiently used for simulation in an MCMC setting. As we show in this article, it fails to be exponentially ergodic on heavy tailed target distributions. We introduce an extension of the Zig-Zag process by allowing the process to move with a non-constant speed function $s$, depending on the current state of the process. We call this process Speed Up Zig-Zag (SUZZ). We provide conditions that guarantee stability properties for the SUZZ process, including non-explosivity, exponential ergodicity in heavy tailed targets and central limit theorem. Interestingly, we find that using speed functions that induce explosive deterministic dynamics may lead to stable algorithms that can even mix faster. We further discuss the choice of an efficient speed function by providing an efficiency criterion for the one-dimensional process and we support our findings with simulation results.
翻译:Zig-Zag 是一个零星的确定性Markov 进程, 在MCMC 设置中高效地用于模拟。 正如我们在本篇文章中所显示的, 它没有在重尾尾部目标分布上成为指数性EGDID。 我们引入了 Zig-Zag 进程的扩展, 允许该过程以非恒定速度函数移动, 取决于该过程的当前状态。 我们称之为“ 加速Zig-Zag (SUZZ) 进程。 我们提供了一些条件, 保证SUZ 进程的稳定性, 包括非爆炸性、 重尾部目标中的指数性惯性以及中央限制理论。 有趣的是, 我们发现, 使用速度函数诱发爆炸确定性动态, 可能导致稳定的算法, 甚至可以更快地混合。 我们进一步讨论高效速度函数的选择, 为一维进程提供一个效率标准, 我们用模拟结果来支持我们的结论 。