Emerging software-defined networking technologies enable more adaptive communication infrastructures, allowing for quick reactions to changes in networking requirements by exploiting the workload's temporal structure. However, operating networks adaptively is algorithmically challenging, as meeting networks' stringent dependability requirements relies on maintaining basic consistency and performance properties, such as loop freedom and congestion minimization, even during the update process. This paper leverages an augmentation-speed tradeoff to significantly speed up consistent network updates. We show that allowing for a small and short (hence practically tolerable, e.g., using buffering) oversubscription of links allows us to solve many network update instances much faster, as well as to reduce computational complexities (i.e., the running times of the algorithms). We first explore this tradeoff formally, revealing the computational complexity of scheduling updates. We then present and analyze algorithms that maintain logical and performance properties during the update. Using an extensive simulation study, we find that the tradeoff is even more favorable in practice than our analytical bounds suggest. In particular, we find that by allowing just 10% augmentation, update times reduce by more than 32% on average, across a spectrum of real-world networks.
翻译:软件定义的新兴网络技术使得更适应性更强的通信基础设施能够通过利用工作量的时间结构对网络需求的变化作出快速反应,从而允许通过利用工作量的时间结构对网络需求的变化做出快速反应。 但是,由于满足网络的严格可靠性要求依赖于维持基本的一致性和性能特性,例如循环自由和阻塞最小化,甚至在更新过程中也是如此。 本文利用增强速度的权衡来大大加快网络的一致更新。 我们显示,允许一个小的和短的(实际上可以容忍的,例如使用缓冲)过量的连接,使我们能够更快地解决许多网络更新案例,并减少计算的复杂性(即算法运行时间)。 我们首先正式探讨这一交易,揭示了时间更新的计算复杂性。 然后我们提出和分析在更新过程中保持逻辑和性特性的算法。 我们通过广泛的模拟研究发现,在实践中的权衡比我们的分析界限所显示的要更有利。 特别是,我们发现,通过允许仅仅10%的扩大,在现实世界网络中平均减少32%以上的时间。