The Akaike information criterion (AIC) is a common tool for model selection. It is frequently used in violation of regularity conditions at parameter space singularities and boundaries. The expected AIC is generally not asymptotically equivalent to its target at singularities and boundaries, and convergence to the target at nearby parameter points may be slow. We develop a generalized AIC for candidate models with or without singularities and boundaries. We show that the expectation of this generalized form converges everywhere in the parameter space, and its convergence can be faster than that of the AIC. We illustrate the generalized AIC on example models from phylogenomics, showing that it can outperform the AIC and gives rise to an interpolated effective number of model parameters, which can differ substantially from the number of parameters near singularities and boundaries. We outline methods for estimating the often unknown generating parameter and bias correction term of the generalized AIC.
翻译:Akaike信息标准(AIC)是选择模型的常用工具,经常违反参数空间独特性和边界的常规条件使用,预期AIC通常不等同于其奇点和边界的目标,在附近参数点与目标的趋同速度可能很慢。我们为有或没有奇点和边界的候选模型开发了一个通用的AIC。我们表明,这种通用形式的预期在参数空间的任何地方都汇合,其趋同速度可能比AIC快。我们用来自物理基因学的模型来说明通用的AIC,表明它能够超越AIC,并产生出一个内插有效数量的模型参数,这些参数可能与接近奇点和边界的参数数量大不相同。我们概述了估计通用的AIC通常未知的生成参数和偏差校正术语的方法。