This paper is concerned with the theoretical modeling and analysis of uplink connection performance of a radiosonde network deployed in a typhoon. Similar to existing works, the stochastic geometry theory is leveraged to derive the expression of the uplink connection probability (CP) of a radiosonde. Nevertheless, existing works assume that network nodes are spherically or uniformly distributed. Different from the existing works, this paper investigates two particular motion patterns of radiosondes in a typhoon, which significantly challenges the theoretical analysis. According to their particular motion patterns, this paper first separately models the distributions of horizontal and vertical distances from a radiosonde to its receiver. Secondly, this paper derives the closed-form expressions of cumulative distribution function (CDF) and probability density function (PDF) of a radiosonde's three-dimensional (3D) propagation distance to its receiver. Thirdly, this paper derives the analytical expression of the uplink CP for any radiosonde in the network. Finally, extensive numerical simulations are conducted to validate the theoretical analysis, and the influence of various network design parameters are comprehensively discussed. Simulation results show that when the signal-to-interference-noise ratio (SINR) threshold is below -35 dB, and the density of radiosondes remains under 0.01/km^3, the uplink CP approaches 26%, 39%, and 50% in three patterns.
翻译:暂无翻译