We consider a state estimation problem for gas pipeline flow modeled by the one-dimensional barotropic Euler equations. In order to reconstruct the system state, we construct an observer system of Luenberger type based on distributed measurements of one state variable. First, we show the existence of Lipschitz-continuous semi-global solutions of the observer system and of the original system for initial and boundary data satisfying smallness and compatibility conditions for a single pipe and for general networks. Second, based on an extension of the relative energy method we prove that the state of the observer system converges exponentially in the long time limit towards the original system state. We show this for a single pipe and for star-shaped networks.
翻译:我们认为,以单维的巴罗热带尤勒方程式为模型的天然气管道流量存在国家估计问题。为了重建系统状态,我们根据对一个州变量的分布测量,建立了一个Luenberger类型的观察系统。首先,我们展示了观察系统以及初始和边界数据的原始系统Lipschitz持续半全球解决方案的存在,这些系统满足单一管道和一般网络的小型和兼容性条件。第二,根据相对能源方法的扩展,我们证明观察系统的状况在最初系统状态的漫长时限内成倍地交汇。我们为单一管道和恒星形网络展示了这一点。</s>