Real-world datasets often have missing values associated with complex generative processes, where the cause of the missingness may not be fully observed. This is known as missing not at random (MNAR) data. However, many imputation methods do not take into account the missingness mechanism, resulting in biased imputation values when MNAR data is present. Although there are a few methods that have considered the MNAR scenario, their model's identifiability under MNAR is generally not guaranteed. That is, model parameters can not be uniquely determined even with infinite data samples, hence the imputation results given by such models can still be biased. This issue is especially overlooked by many modern deep generative models. In this work, we fill in this gap by systematically analyzing the identifiability of generative models under MNAR. Furthermore, we propose a practical deep generative model which can provide identifiability guarantees under mild assumptions, for a wide range of MNAR mechanisms. Our method demonstrates a clear advantage for tasks on both synthetic data and multiple real-world scenarios with MNAR data.


翻译:现实世界数据集往往缺少与复杂的基因化过程相关的数值,而这种过程可能无法充分观察到缺失的原因。这并非随机(MNAR)数据,而是已知的缺失(MNAR)数据。然而,许多估算方法没有考虑到缺失机制,导致在有MNAR数据时有偏颇的估算值。虽然有少数方法考虑了MNAR假设,但其模型在MNAR下的可识别性一般得不到保证。也就是说,即使有无限的数据样本,模型参数也不能单独确定,因此这些模型提供的估算结果仍然可能有偏差。许多现代深层基因化模型尤其忽视了这一问题。在这项工作中,我们通过系统分析MNAR数据下的基因化模型的可识别性来填补这一空白。此外,我们提出了一个实用的深层次的基因化模型,可以在宽广的假设下提供可识别性的保证。我们的方法表明合成数据的任务和与MNAR数据有关的多种真实世界情景的明显优势。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
85+阅读 · 2021年1月7日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
6+阅读 · 2018年4月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员