Time series imputation is a fundamental task for understanding time series with missing data. Existing methods either do not directly handle irregularly-sampled data or degrade severely with sparsely observed data. In this work, we reformulate time series as permutation-equivariant sets and propose a novel imputation model NRTSI that does not impose any recurrent structures. Taking advantage of the permutation equivariant formulation, we design a principled and efficient hierarchical imputation procedure. In addition, NRTSI can directly handle irregularly-sampled time series, perform multiple-mode stochastic imputation, and handle data with partially observed dimensions. Empirically, we show that NRTSI achieves state-of-the-art performance across a wide range of time series imputation benchmarks.
翻译:时间序列估算是理解缺少数据的时间序列的一项基本任务。 现有的方法不是直接处理非正常抽样数据,就是以很少观察的数据严重降解。 在这项工作中,我们重新将时间序列改制为变异-等式数据集,并提出一个新的不强加任何经常性结构的NRTSI估算模型。 利用变异等式配方,我们设计了一个原则性和高效率的等级估算程序。 此外, NRTSI可以直接处理非正常抽样时间序列,进行多式随机估测,并处理部分观察到的维度数据。 我们很自然地表明,NRTSI在一系列时间序列估算基准中达到了最先进的性能。