Time series imputation is a fundamental task for understanding time series with missing data. Existing methods either do not directly handle irregularly-sampled data or degrade severely with sparsely observed data. In this work, we reformulate time series as permutation-equivariant sets and propose a novel imputation model NRTSI that does not impose any recurrent structures. Taking advantage of the permutation equivariant formulation, we design a principled and efficient hierarchical imputation procedure. In addition, NRTSI can directly handle irregularly-sampled time series, perform multiple-mode stochastic imputation, and handle data with partially observed dimensions. Empirically, we show that NRTSI achieves state-of-the-art performance across a wide range of time series imputation benchmarks.


翻译:时间序列估算是理解缺少数据的时间序列的一项基本任务。 现有的方法不是直接处理非正常抽样数据,就是以很少观察的数据严重降解。 在这项工作中,我们重新将时间序列改制为变异-等式数据集,并提出一个新的不强加任何经常性结构的NRTSI估算模型。 利用变异等式配方,我们设计了一个原则性和高效率的等级估算程序。 此外, NRTSI可以直接处理非正常抽样时间序列,进行多式随机估测,并处理部分观察到的维度数据。 我们很自然地表明,NRTSI在一系列时间序列估算基准中达到了最先进的性能。

0
下载
关闭预览

相关内容

专知会员服务
92+阅读 · 2021年6月3日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
23+阅读 · 2020年1月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
155+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Arxiv
3+阅读 · 2018年10月25日
Arxiv
5+阅读 · 2016年10月24日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
Top
微信扫码咨询专知VIP会员