We consider the problem of constructing confidence intervals for the median of a response $Y \in \mathbb{R}$ conditional on features $X \in \mathbb{R}^d$ in a situation where we are not willing to make any assumption whatsoever on the underlying distribution of the data $(X,Y)$. We propose a method based upon ideas from conformal prediction and establish a theoretical guarantee of coverage while also going over particular distributions where its performance is sharp. Additionally, we prove an equivalence between confidence intervals for the conditional median and confidence intervals for the response variable, resulting in a lower bound on the length of any possible conditional median confidence interval. This lower bound is independent of sample size and holds for all distributions with no point masses.
翻译:我们考虑了在我们不愿对数据基本分配(X,Y)美元做出任何假设的情况下,为答复的中位数($Y $@in\mathbb{R}$)构建信任间隔的问题,条件是以特质($X \ in\mathbb{R}$)为条件。我们建议了一种基于符合预测的理念的方法,并建立了覆盖面的理论保障,同时在特定分布中,其性能非常强的情况下,对特定分布进行了理论保障。此外,我们证明,在有条件中位数和应答变量的信任间隔之间,信任间隔是等值的,因此降低了任何可能的有条件中位信任间隔的长度。这一较低约束独立于样本大小,并且对所有无点质量的分布都持有。