Multi-human multi-robot teams have great potential for complex and large-scale tasks through the collaboration of humans and robots with diverse capabilities and expertise. To efficiently operate such highly heterogeneous teams and maximize team performance timely, sophisticated initial task allocation strategies that consider individual differences across team members and tasks are required. While existing works have shown promising results in reallocating tasks based on agent state and performance, the neglect of the inherent heterogeneity of the team hinders their effectiveness in realistic scenarios. In this paper, we present a novel formulation of the initial task allocation problem in multi-human multi-robot teams as contextual multi-attribute decision-make process and propose an attention-based deep reinforcement learning approach. We introduce a cross-attribute attention module to encode the latent and complex dependencies of multiple attributes in the state representation. We conduct a case study in a massive threat surveillance scenario and demonstrate the strengths of our model.
翻译:多人类多机器人小组具有巨大潜力,通过具有不同能力和专门知识的人类和机器人协作,开展复杂和大规模的任务。为了高效率地运作这种高度多样化的小组,并最大限度地提高小组业绩,及时、精细的初步任务分配战略,考虑到小组成员之间的个别差异和任务需要。虽然现有工作在根据代理人状况和业绩重新分配任务方面显示出有希望的结果,但忽视小组固有的差异性妨碍了他们在现实情景中的有效性。在本文件中,我们提出了多人类多机器人小组最初任务分配问题的新提法,作为背景的多属性决策程序,并提出了注重关注的深层强化学习方法。我们引入了一个交叉关注模块,以规范国家代表中多种属性的潜在和复杂依赖性。我们在大规模威胁监测情景中进行案例研究,并展示我们模型的优势。</s>