Many environments contain numerous available niches of variable value, each associated with a different local optimum in the space of behaviors (policy space). In such situations it is often difficult to design a learning process capable of evading distraction by poor local optima long enough to stumble upon the best available niche. In this work we propose a generic reinforcement learning (RL) algorithm that performs better than baseline deep Q-learning algorithms in such environments with multiple variably-valued niches. The algorithm we propose consists of two parts: an agent architecture and a learning rule. The agent architecture contains multiple sub-policies. The learning rule is inspired by fitness sharing in evolutionary computation and applied in reinforcement learning using Value-Decomposition-Networks in a novel manner for a single-agent's internal population. It can concretely be understood as adding an extra loss term where one policy's experience is also used to update all the other policies in a manner that decreases their value estimates for the visited states. In particular, when one sub-policy visits a particular state frequently this decreases the value predicted for other sub-policies for going to that state. Further, we introduce an artificial chemistry inspired platform where it is easy to create tasks with multiple rewarding strategies utilizing different resources (i.e. multiple niches). We show that agents trained this way can escape poor-but-attractive local optima to instead converge to harder-to-discover higher value strategies in both the artificial chemistry environments and in simpler illustrative environments.
翻译:许多环境都包含着许多可变价值的可选位置,每个环境都与行为空间(政策空间)中不同的当地最佳空间(政策空间)相关。在这种情况下,往往很难设计一个能够躲避当地低劣选手分散注意力的学习过程,这种过程往往足以避开当地最佳可选位置。在这项工作中,我们提议了一个通用的强化学习算法,这种算法在这种环境中比基线的深层次的Q学习算法效果好,这种算法具有多种可变价值。我们提议的算法由两部分组成:一个代理结构和一个学习规则。代理结构包含多个次级政策。在进化计算中,学习规则的灵感是用来用新颖的方式利用价值-Decom定位-Network来强化学习过程。我们可以具体地理解它是一种额外的损失术语,在这种环境中,一种政策的经验也被用来更新所有其他政策,从而降低对所访问的州的价值估计值。特别是当一个子政策访问某个特定国家时,这种逻辑结构经常降低其他次政策预测的值。在进化计算中,用价值-我们引入一个经过更深化的多层次化化化的平台,从而可以轻松地将一个更精确地展示一个更精确的跨环境, 将它用来将它变成一个较易地展示一个更深的跨的化学环境。我们用一个更深的跨的跨的平台, 将它来将它展示一个更难的化学环境。我们进化成一个更进化的跨的跨的 。