Recognizing multiple labels of images is a practical and challenging task, and significant progress has been made by searching semantic-aware regions and modeling label dependency. However, current methods cannot locate the semantic regions accurately due to the lack of part-level supervision or semantic guidance. Moreover, they cannot fully explore the mutual interactions among the semantic regions and do not explicitly model the label co-occurrence. To address these issues, we propose a Semantic-Specific Graph Representation Learning (SSGRL) framework that consists of two crucial modules: 1) a semantic decoupling module that incorporates category semantics to guide learning semantic-specific representations and 2) a semantic interaction module that correlates these representations with a graph built on the statistical label co-occurrence and explores their interactions via a graph propagation mechanism. Extensive experiments on public benchmarks show that our SSGRL framework outperforms current state-of-the-art methods by a sizable margin, e.g. with an mAP improvement of 2.5%, 2.6%, 6.7%, and 3.1% on the PASCAL VOC 2007 & 2012, Microsoft-COCO and Visual Genome benchmarks, respectively. Our codes and models are available at https://github.com/HCPLab-SYSU/SSGRL.
翻译:承认图像的多重标签是一项实际和具有挑战性的任务,通过搜索语义特征区域以及制作标签依赖性模型,取得了显著进展;然而,由于缺乏部分级别的监督或语义指导,目前的方法无法准确定位语义区域;此外,它们无法充分探索语义区域之间的相互互动,也没有明确地模拟标签共同发生;为解决这些问题,我们提议了一个语义特征特征特征特征代表性学习(SSGRL)框架(SSGRL)框架,它由两个关键模块组成:1)一个语义分解模块,包含分类语义分解模块,以指导学习语义特征特征代表,2)一个语义互动模块,将语义区域与建立在统计标签共同发生点或语义性指导上的图表联系起来,并通过图表传播机制探索其互动。关于公共基准的广泛实验表明,我们的SSGRL框架以一个可扩展的比值,例如,在2007年PASAC-L VSIAS/MAGRCSAS 和2007年的MSGR-GRAS-CRAS-CR 数据库中分别改进了2.5%、2.6%、6.和3.10%。