We introduce FastSurf, an accelerated neural radiance field (NeRF) framework that incorporates depth information for 3D reconstruction. A dense feature grid and shallow multi-layer perceptron are used for fast and accurate surface optimization of the entire scene. Our per-frame intrinsic refinement scheme corrects the frame-specific errors that cannot be handled by global optimization. Furthermore, FastSurf utilizes a classical real-time 3D surface reconstruction method, the truncated signed distance field (TSDF) Fusion, as prior knowledge to pretrain the feature grid to accelerate the training. The quantitative and qualitative experiments comparing the performances of FastSurf against prior work indicate that our method is capable of quickly and accurately reconstructing a scene with high-frequency details. We also demonstrate the effectiveness of our per-frame intrinsic refinement and TSDF Fusion prior learning techniques via an ablation study.
翻译:我们引入了速成神经光谱场( FastSurf) 框架( FastSurf ), 这个框架包含3D重建的深度信息。 一个密集地貌网格和浅层多层感应器用于快速和精确地优化整个场景的表面。 我们的每个框架的内在完善计划纠正了无法通过全球优化处理的特定框架错误。 此外, FastSurf 使用了经典的实时3D表层重建方法、 短短签名的远程场( TSDF) 融合, 也就是之前为加快培训而对地貌网进行预设的知识。 将快速Surf的性能与先前的工作进行比较的定量和定性实验表明,我们的方法能够以高频率的细节快速和准确地重建一个场景。 我们还通过通缩研究展示了我们每个框架的内在完善和TSDF 之前的融合学习技术的有效性。</s>