Information exchange is a crucial component of many real-world multi-agent systems. However, the communication between the agents involves two major challenges: the limited bandwidth, and the shared communication medium between the agents, which restricts the number of agents that can simultaneously exchange information. While both of these issues need to be addressed in practice, the impact of the latter problem on the performance of the multi-agent systems has often been neglected. This becomes even more important when the agents' information or observations have different importance, in which case the agents require different priorities for accessing the medium and sharing their information. Representing the agents' priorities by fairness weights and normalizing each agent's share by the assigned fairness weight, the goal can be expressed as equalizing the agents' normalized shares of the communication medium. To achieve this goal, we adopt a queueing theoretic approach and propose a distributed fair scheduling algorithm for providing weighted fairness in single-hop networks. Our proposed algorithm guarantees an upper-bound on the normalized share disparity among any pair of agents. This can particularly improve the short-term fairness, which is important in real-time applications. Moreover, our scheduling algorithm adjusts itself dynamically to achieve a high throughput at the same time. The simulation results validate our claims and comparisons with the existing methods show our algorithm's superiority in providing short-term fairness, while achieving a high throughput.


翻译:然而,代理商之间的沟通涉及两大挑战:带宽有限,以及代理商之间共享的通信媒介,这限制了能够同时交换信息的代理商的数量。虽然这两个问题在实践中都需要解决,但后者对多代理系统绩效的影响往往被忽视。当代理商的信息或观察具有不同的重要性时,这一点就变得更加重要,在这种情况下,代理商需要不同的优先获取媒体和分享信息。通过公平加权和使每个代理商的份额正常化来代表代理商的优先事项,这一目标可以表现为使代理商在通信媒介中正常的份额相等。为了实现这一目标,我们采取排队式的分类方法,提出分配公平的时间安排算法,以便在单一代理商网络中提供加权的公平性。我们提议的算法保证任何代理商之间正常份额差距的上限。这特别可以提高短期公平性,这对于实时应用非常重要。此外,我们的算法在动态上调整了代理人在通信媒介中正常份额的比重,同时以动态的方式实现了我们高水平的比值。

0
下载
关闭预览

相关内容

【DeepMind】强化学习教程,83页ppt
专知会员服务
157+阅读 · 2020年8月7日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
4+阅读 · 2019年1月14日
VIP会员
相关VIP内容
【DeepMind】强化学习教程,83页ppt
专知会员服务
157+阅读 · 2020年8月7日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员