Training and testing supervised object detection models require a large collection of images with ground truth labels. Labels define object classes in the image, as well as their locations, shape, and possibly other information such as pose. The labeling process has proven extremely time consuming, even with the presence of manpower. We introduce a novel labeling tool for 2D images as well as 3D triangular meshes: 3D Labeling Tool (3DLT). This is a standalone, feature-heavy and cross-platform software that does not require installation and can run on Windows, macOS and Linux-based distributions. Instead of labeling the same object on every image separately like current tools, we use depth information to reconstruct a triangular mesh from said images and label the object only once on the aforementioned mesh. We use registration to simplify 3D labeling, outlier detection to improve 2D bounding box calculation and surface reconstruction to expand labeling possibility to large point clouds. Our tool is tested against state of the art methods and it greatly surpasses them in terms of speed while preserving accuracy and ease of use.
翻译:受监督的物体探测模型需要大量收集带有地面真象标签的图像。 标签定义图像中的物体类别, 以及它们的位置、 形状和可能的其他信息, 如布局等。 标签过程证明非常耗时, 即使有人力存在 。 我们为 2D 图像和 3D 三角色模类引入了一个新的标签工具 : 3D 标签工具 (3DLT ) 。 这是一个独立、 特重和跨平台软件, 不需要安装, 并且可以运行在 Windows、 MacOS 和 Linux 的分布上。 我们使用深度信息, 而不是在每张图像上单独标出相同的对象, 而不是像当前工具一样,, 用深度信息来从上述图像中重建三角网格, 并在上述网格上只标出一次 。 我们使用注册来简化 3D 标签, 外部检测来改进 2D 捆绑的计算和表面重建, 以扩大标签到大点云的可能性 。 我们的工具是用艺术方法的状态测试, 在速度上大大超过它们, 同时保持准确和方便使用 。