Recent work has shown that in a dataset of user ratings on items there exists a group of Core Users who hold most of the information necessary for recommendation. This set of Core Users can be as small as 20 percent of the users. Core Users can be used to make predictions for out-of-sample users without much additional work. Since Core Users substantially shrink a ratings dataset without much loss of information, they can be used to improve recommendation efficiency. We propose a method, combining latent factor models, ensemble boosting and K-means clustering, to generate a small set of Artificial Core Users (ACUs) from real Core User data. Our ACUs have dense rating information, and improve the recommendation performance of real Core Users while remaining interpretable.
翻译:最近的工作表明,在一组项目用户评级数据集中,有一组核心用户掌握了建议所需的大部分信息。这组核心用户可能只占用户总数的20%。核心用户可以用来在没有大量额外工作的情况下对外抽样用户作出预测。由于核心用户大量压缩评级数据集而没有大量信息损失,因此可以用来提高建议效率。我们提出了一个方法,将潜在要素模型、共同推进和K手段组合结合起来,从实际核心用户数据中产生一小组人造核心用户(ACUs),我们的非核心用户有密集的评级信息,在仍然可以解释的同时,提高真实核心用户的建议性能。