The paper presents two variants of a Krylov-Simplex iterative method that combines Krylov and simplex iterations to minimize the residual $r = b-Ax$. The first method minimizes $\|r\|_\infty$, i.e. maximum of the absolute residuals. The second minimizes $\|r\|_1$, and finds the solution with the least absolute residuals. Both methods search for an optimal solution $x_k$ in a Krylov subspace which results in a small linear programming problem. A specialized simplex algorithm solves this projected problem and finds the optimal linear combination of Krylov basis vectors to approximate the solution. The resulting simplex algorithm requires the solution of a series of small dense linear systems that only differ by rank-one updates. The $QR$ factorization of these matrices is updated each iteration. We demonstrate the effectiveness of the methods with numerical experiments.
翻译:本文展示了Krylov-Soplex迭代法的两个变式,该变式将Krylov和简单迭代法结合起来,以尽量减少剩余美元=b-Ax$。第一种方法最大限度地减少$@r ⁇ infty$,即绝对剩余量的最大值。第二种方法尽量减少$r ⁇ 1$,找到最不绝对剩余值的解决方案。两种方法都在Krylov子空间寻找最佳解决方案$x_k$,这导致一个小线性编程问题。一个专门简单算法解决了这一预测的问题,并找到了Krylov基矢量的最佳线性组合,以接近解决方案。由此产生的简单算法需要一系列小型密度线性系统的解决办法,这些系统仅因一级更新而不同。这些矩阵的$QR乘法每更新一次。我们用数字实验来证明这些方法的有效性。