We provide upper bounds on the perturbation of invariant subspace of normal matrices measured using a metric in the space of vector subspaces of $\mathbb{C}^n$. We derive the upper-bounds in terms of (1) the spectrum of both the unperturbed and perturbed matrices, as well as, (2) the spectrum of the unperturbed matrix only. We show that if the spectrum is well-clustered (a relation formally described as "separation-preserving perturbation"), the later kind of upper-bound is possible and the corresponding perturbed subspace is also computable. All results are computationally favorable (e.g., computing the bounds do not require combinatorial searches or solving non-trivial optimization problems). We apply the result to a graph perturbation problem.


翻译:我们提供正常矩阵的变异子空间的振动的上界值, 使用 $\ mathbb{C ⁇ {C ⁇ n$ 的矢量子空间中测量的正常矩阵的度量空间。 我们从以下角度得出上界值:(1) 未扰动和受扰动的矩阵的频谱,(2) 仅提供未扰动的矩阵的频谱。 我们显示, 如果频谱的频谱是周密的( 正式描述为“ 分离- 保留扰动 ” 的关联 ), 后界值是可能的, 相应的扰动的子空间也是可比较的 。 所有结果都是可计算好的( 例如, 计算边框不需要组合搜索或解决非三角优化问题 ) 。 我们将结果应用到图形的扰动问题 。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2021年5月13日
Arxiv
0+阅读 · 2021年5月13日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Arxiv
0+阅读 · 2021年5月13日
Arxiv
0+阅读 · 2021年5月13日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2018年2月24日
Top
微信扫码咨询专知VIP会员