Cognitive neuroscience research indicates that humans leverage cues to activate entity-centered memory traces (engrams) for complex, multi-hop recollection. Inspired by this mechanism, we introduce EcphoryRAG, an entity-centric knowledge graph RAG framework. During indexing, EcphoryRAG extracts and stores only core entities with corresponding metadata, a lightweight approach that reduces token consumption by up to 94\% compared to other structured RAG systems. For retrieval, the system first extracts cue entities from queries, then performs a scalable multi-hop associative search across the knowledge graph. Crucially, EcphoryRAG dynamically infers implicit relations between entities to populate context, enabling deep reasoning without exhaustive pre-enumeration of relationships. Extensive evaluations on the 2WikiMultiHop, HotpotQA, and MuSiQue benchmarks demonstrate that EcphoryRAG sets a new state-of-the-art, improving the average Exact Match (EM) score from 0.392 to 0.474 over strong KG-RAG methods like HippoRAG. These results validate the efficacy of the entity-cue-multi-hop retrieval paradigm for complex question answering.


翻译:认知神经科学研究表明,人类利用线索激活以实体为中心的记忆痕迹(印迹)以实现复杂的多跳回忆。受此机制启发,我们提出了EcphoryRAG,一个以实体为中心的知识图谱RAG框架。在索引阶段,EcphoryRAG仅提取并存储核心实体及其对应元数据,这种轻量级方法相比其他结构化RAG系统可减少高达94%的token消耗。在检索阶段,系统首先从查询中提取线索实体,随后在知识图谱上执行可扩展的多跳关联搜索。关键在于,EcphoryRAG能动态推断实体间的隐含关系以填充上下文,从而在不需穷举预定义关系的情况下实现深度推理。在2WikiMultiHop、HotpotQA和MuSiQue基准上的大量评估表明,EcphoryRAG创造了新的最优性能,将平均精确匹配(EM)分数从HippoRAG等强KG-RAG方法的0.392提升至0.474。这些结果验证了实体-线索-多跳检索范式在复杂问答任务中的有效性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员